skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Peerlinck, Amy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As objectives increase in many-objective optimization (MaOO), often so do the number of non-dominated solutions, potentially resulting in solution sets with thousands of non-dominated solutions. Such a larger final solution set increases difficulty in visualization and decision-making. This raises the question: how can we reduce this large solution set to a more manageable size? In this paper, we present a new objective archive management (OAM) strategy that performs post-optimization solution set reduction to help the end-user make an informed decision without requiring expert knowledge of the field of MaOO. We create separate archives for each objective, selecting solutions based on their fitness as well as diversity criteria in both the objective and variable space. We can then look for solutions that belong to more than one archive to create a reduced final solution set. We apply OAM to NSGA-II and compare our approach to environmental selection finding that the obtained solution set has better hypervolume and spread. Furthermore, we compare results found by OAM-NSGA-II to NSGA-III and get competitive results. Additionally, we apply OAM to reduce the solutions found by NSGA-III and find that the selected solutions perform well in terms of overall fitness, successfully reducing the number of solutions. 
    more » « less
  2. Kim, Moon S.; Cho, Byoung-Kwan; Chin, Bryan A. (Ed.)